Tuesday, 13 August 2013

proof writing - Prove the shift rule for series

Let $N$ be a natural number. Then the series $\sum_{n=1}^{\infty}a_n$ converges if and only if the series $\sum_{n=1}^{\infty}a_{N+n}$ converges.




I've tried splitting $\sum_{n=1}^{\infty}a_n$ into $\sum_{n=1}^{\infty}a_{N+n} +\sum_{n=1}^{N}a_n$ but am not getting anywhere. I've also tried using the $\epsilon$ definition for convergence but am getting confused.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...