Thursday, 15 August 2013

linear algebra - Find the determinant of the following;


Find the determinant of the following matrix, and for which value of $x$ is it invertible;
$$\begin{pmatrix}
x & 1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & x & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & x & 1 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & x & 1 \\

1 & 0 & 0 & 0 & 0 & \ldots & 0 & x
\end{pmatrix}$$
enter image description here




Now I don't really know how to procees as I get find a suitable row operations that will simplify the process so I thought I would look at cases, maybe see a pattern.



$\mathbf{2 \times 2}$



$\begin{bmatrix}x & 1\\1 & x\end{bmatrix}$
This has determinant; $x^2-1$




$\mathbf{3 \times 3}$



$\begin{bmatrix}x & 1 & 0\\0 & x & 1\\1 & 0 & x\end{bmatrix}$
This has determinant $x^3+1$



So is that the pattern?
determinant is $x^n-1$ if $n$ is even,
determinant is $x^n+1$ if $n$ is odd??

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...