Wednesday, 28 August 2013

Modular arithmetic three variables



Show that if the integers $x, y,$ and $z$ satisfy $x^3 + 3y^3 = 9z^3$
then $x = y = z = 0.$
How should I interpret this question and how to proceed?
I am thinking about the Euclidean algorithm but it becomes confusing when $x,y,z$ comes like variables?


Answer




First notice that if $d=\mbox{gcd}(x,y,z)$ then $d^3$ can be factored out of the equation. So we can assume that $d=1$. Then $x^3 = 9z^3-3y^3$, so $3$ divides $x$, say $ x=3k$. So we have $3^3k^3 = 9z^3-3y^3$ and we can divide everything by $3$ to get $9k^3= 3 z^3-y^3$. A similar argument shows $3$ divides $y$. Repeat to show $3$ divides $z$. This contradicts that $d=1$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...