Using Euler's identity ($e^{in\theta}=\cos n\theta+i \sin n\theta$), express $\sin 3\theta$ and $\cos 3\theta$ as functions of $\sin \theta$ and $\cos \theta$.
Any ideas?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment