Thursday, 22 August 2013

trigonometry - Express $sin 3theta$ and $cos 3theta$ as functions of $sin theta$ and $cos theta$ using Euler's identity

Using Euler's identity ($e^{in\theta}=\cos n\theta+i \sin n\theta$), express $\sin 3\theta$ and $\cos 3\theta$ as functions of $\sin \theta$ and $\cos \theta$.



Any ideas?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...