Thursday, 29 August 2013

sum of the series $ frac{1-2x}{1-x+x^2}+frac{4x^3-2x}{1-x^2+x^4}+frac{8x^7-4x^3}{1-x^4+x^8}+cdots cdots $




If $|x|<1,$ Then the sum of the series $$ \frac{2x-1}{1-x+x^2}+\frac{4x^3-2x}{1-x^2+x^4}+\frac{8x^7-4x^3}{1-x^4+x^8}+\cdots \cdots $$




Try: Let $$A= \frac{1-2x}{1-x+x^2}+\frac{4x^3-2x}{1-x^2+x^4}+\frac{8x^7-4x^3}{1-x^4+x^8}+\cdots $$




$\displaystyle \int Adx $



$$= \int \bigg[\frac{1-2x}{1-x+x^2}+\frac{4x^3-2x}{1-x^2+x^4}+\frac{8x^7-4x^3}{1-x^4+x^8}+\cdots \cdots \bigg]dx$$



$$\int Adx = \ln\bigg[(1-x+x^2)\cdot (1-x^2+x^4)\cdot (1-x^4+x^8)\cdots \bigg]$$



Now i have seems that expression under $\ln$ on



Right side must have closed form in $-1




But i could not understand how can i find it.



could some help me, thanks


Answer



Hint:



$$(1+x+x^2)(1-x+x^2)=(1+x^2)^2-x^2=?$$



$$\implies\prod_{r=1}^n(1-x^{2^r}+\left(x^{2^r}\right)^2)=\dfrac{1-x^{2^{n+1}}+\left(x^{2^{n+1}}\right)^2}{1+x+x^2}$$




Now $\lim_{n\to\infty}2^{n+1}\to\infty$



and $|x|<1, \lim_{m\to\infty}x^m=0$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...