Wednesday 28 August 2013

measure theory - Let $f$ a measurable function, then $f^2$ is a measurable function, $f:Xrightarrowbar{mathbb{R}}$

Let $f$ a measurable function, then $f^2$ is a measurable function, $f:X\rightarrow\bar{\mathbb{R}}$ and
$\mathbb{A}$ a sigma-algebra of sets.



My attempt



Note $x\in(f^2)^{-1}(c,\infty)=\{x:f^2(x)>c\}=\{x:f(x)>\pm\sqrt{c}\}=\{x:f(x)>\sqrt{c}\}\cup\{x:f(x)<-\sqrt{c}\}$



Here i'm stuck. Can someone help me?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...