Friday 23 August 2013

Sum of infinite series involving cos$theta$



Find the sum of following series:



$$1 + \frac{1}{4!} \cos 4\theta + \frac{1}{8!} \cos 8\theta + ...$$




My attempt:



I need hint to start. Thanks!


Answer



HINT
$$\frac 12(\cosh(x)+\cos(x))=\frac 12\left(\sum_{k=0}^\infty \frac {x^{2k}}{(2k)!}+\sum_{k=0}^\infty \frac {(-1)^kx^{2k}}{(2k)!}\right)=\sum_{k=0}^\infty \frac {x^{4k}}{(4k)!}$$
and you have:
$$\sum_{k=0}^\infty \frac{\cos(4k\theta)}{(4k)!}$$
and $\cos(x)=\Re(e^{ix})$





The answer turns out to be: $\dfrac 12 \left(\cos(\sin(\theta))\cosh(\cos(\theta))+ \cos(\cos(\theta))\cosh(\sin(\theta))\right)$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...