Tuesday, 10 June 2014

summation - Find the sum of the series of $frac{1}{1cdot 3}+frac{1}{3cdot 5}+frac{1}{5cdot 7}+frac{1}{7cdot 9}+...$



Find the sum of the series
$$\frac1{1\cdot3}+\frac1{3\cdot5}+\frac1{5\cdot7}+\frac1{7\cdot9}+\frac1{9\cdot11}+\cdots$$
My attempt solution:
$$\frac13\cdot\left(1+\frac15\right)+\frac17\cdot\left(\frac15+\frac19\right)+\frac1{11}\cdot\left(\frac19+\frac1{13}\right)+\cdots$$
$$=\frac13\cdot\left(\frac65\right)+\frac17\cdot \left(\frac{14}{45}\right)+\frac1{11}\cdot\left(\frac{22}{117}\right)+\cdots$$
$$=2\cdot\left(\left(\frac15\right)+\left(\frac1{45}\right)+\left(\frac1{117}\right)+\cdots\right)$$

$$=2\cdot\left(\left(\frac15\right)+\left(\frac1{5\cdot9}\right)+\left(\frac1{9\cdot13}\right)+\cdots\right)$$
It is here that I am stuck. The answer should be $\frac12$ but I don't see how to get it. Any suggestions?



Also, a bit more generally, are there good books (preferably with solutions) to sharpen my series skills?


Answer



This is a general approach to evaluate the sum of series, like these.



First find $n^{th}$ term of series.



Let $T_n$ denote the $n^{th}$ term.




We see that,



$T_1 = \frac{1}{\color{green}{1} \cdot \color{teal}{3}} $



$T_2 = \frac{1}{\color{green}{3} \cdot \color{teal}{5}} $



And so on.
Let the numbers in $\color{green}{green} $ be
$$\color{green}{X_1,X_2,X_3,X_4,..=1,3,5,7...}$$




Clearly they form an A.P. with common difference $=2$



So, $n^{th} $ term of this AP is $ 1 + (n-1) × 2 = \color{green}{2n-1} $



Similarly,
Let the numbers in $\color{teal}{teal} $ be $$\color{teal}{Y_1,Y_2,Y_3,Y_4,..=3,5,7,9...}$$
Clearly they form an A.P. with common difference $=2$



So, $n^{th} $ term of this AP is $ 3 + (n-1) × 2 =\color{teal}{ 2n+1 }$




So, the $n^{th}$ term of the main question is just



$$ T_n = \frac{1}{\color{green}{(2n-1)} \cdot \color{teal}{(2n+1)}} $$



Now, taking summation from $ 1 $ to $ n $ , we have,



$$ \sum_{n=1}^n \frac{1}{(2n-1) \cdot (2n+1)} $$



$$= \sum_{n=1}^n = \frac{1}{2} \cdot \frac{(2n+1)-(2n-1)}{(2n-1)(2n+1)} $$




$$= \sum_{n=1}^n = \frac{1}{2} \cdot \frac{1}{(2n-1)} - \frac{1}{(2n+1)} $$



$$= \sum_{n=1}^n = \frac{1}{2} \cdot ( 1 - \frac{1}{(2n+1)} ) $$



While $ n = ∞ $,



$$ \sum_{n=1}^∞ = \frac{1}{2} \cdot ( 1 - \frac{1}{(2(∞)+1)} ) $$



$$= \sum_{n=1}^∞ = \frac{1}{2} \cdot ( 1 - \frac{1}{∞} ) $$




Since $ \frac{1}{∞} = 0 $,



$$ \sum_{n=1}^∞ = \frac{1}{2} \cdot ( 1 - 0 ) $$



Which is



$$ \sum_{n=1}^∞ = \frac{1}{2} $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...