Let
$P=\text{a prime number}$
$A=\text{an even positive integer}$
$B=\text{an odd positive integer}$
Prove by contradiction that $\left(P^B\right)^{\frac 1A}$ is irrational
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment