Sunday, 2 August 2015

calculus - Find $limlimits_{n to infty} sumlimits_{k = 0}^{n} dfrac{binom{n}{k}}{n2^n+k}$.




I have to find the following limit:



$$\lim\limits_{n \to \infty} \sum\limits_{k = 0}^{n} \dfrac{\binom{n}{k}}{n2^n+k}$$



I thought I can use something from this other, seemingly similar question, but I don't see any way of manipulating this sum into something easier to work with. So how should I approach this limit?


Answer



When $k \in \{0, 1, \dotsc, n\}$
$$ \binom{n}{k} \frac{1}{n2^n+n} \leq \binom{n}{k} \frac{1}{n2^n+k} \leq \binom{n}{k} \frac{1}{n2^n}, $$
whence
$$ \frac{2^n}{n(2^n + 1)} \leq \sum_{k = 0}^n \binom{n}{k} \frac{1}{n2^n+k} \leq \frac{2^n}{n2^n}. $$




By squeezing,
$$ \lim_{n \to \infty} \sum_{k = 0}^n \binom{n}{k} \frac{1}{n2^n+k} = 0.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...