I'm trying to understand how $ 2^{\aleph_0} > \aleph_0 $. I was reading through this sketch of the proof, but don't quite understand how they show that $\mathrm{card}((0,1)) = \mathrm{card}(\mathcal{P}(\mathbb{N}))$. Is there a different way of explaining this? Or maybe a different way of explaining the whole proof? I'm just trying to wrap my head around this, so any help is appreciated!
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment