Saturday, 1 August 2015

probability theory - If $Z=X$ on $A$ and $Z=Y$ on $A^c$ then $Z$ is a random variable




Let $X$ and $Y$ be random random variables and let $A \in \mathcal{B}$. Prove that the function $Z$ defined by
$$Z(\omega)=\begin{cases}
X(\omega),& \text{ if } \omega \in A \\

Y(\omega),& \text{ if } \omega \in A^{c}
\end{cases}$$
is a random variable




Proof so far:
$$Z^{-1}((-\infty,a])=\{\omega:Z(\omega)\geq a\}=\{\omega: Z(\omega)\geq a, \omega \in A\}\cup\{\omega: Z(\omega)\leq a, \omega \in A^{c}\}=Y^{-1}[a,\infty) \cup X^{-1}([a,\infty))$$
So $Z$ is measurable


Answer



Let $X, Y$ be random variables in $(\Omega, \mathcal B, \mathbb P)$.




If $A \in \mathcal B$, then $1_A$ and $1_{A^C}$ are random variables.



Note that



$$Z = X1_A + Y1_{A^C}$$



Since sums or products of random variables in $(\Omega, \mathcal B, \mathbb P)$ are random variables in $(\Omega, \mathcal B, \mathbb P)$, $Z$ is a random variable in $(\Omega, \mathcal B, \mathbb P)$.







As for your proof, I think you should say:




  1. $\forall a \in \mathbb R$


  2. have $Z \ge a$ instead of $Z \le a$


  3. $Z$ is $\mathcal B$-measurable



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...