Friday, 20 November 2015

abstract algebra - Right invertible and left zero divisor in matrix rings over a commutative ring


If a ring $R$ is commutative, I don't understand why if $A, B \in R^{n \times n}$, $AB=1$ means that $BA=1$, i.e., $R^{n \times n}$ is Dedekind finite.




Arguing with determinant seems to be wrong, although $\det(AB)=\det(BA ) =1$ but it necessarily doesn't mean that $BA =1$.




And is every left zero divisor also a right divisor ?



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...