Thursday, 19 November 2015

trigonometry - Rewriting a trig function into a sum of exponential functions



Rewrite the function $2 + 4\sin(\pi t + \frac{\pi}{6})$ into a sum of exponential functions. By that I mean using Euler's formula $\sin(x) = \dfrac{e^{i\pi x} - e^{-i\pi x}}{2i}$.



If it wasn't for the $\frac{\pi}{6}$ term, this wouldn't be a problem for me, but I'm not sure what I can do to fix that.


Answer



Using additional formulas:

$$
2+4\sin(\pi t+\frac{\pi}{6})=
2+4\sin(\pi t)\cos\frac{\pi}{6}+4\cos(\pi t)\sin\frac{\pi}{6}=
$$
$$
=2+2\sqrt{3}\dfrac{e^{i\pi^2t} + e^{-i\pi^2t}}{2}+2\dfrac{e^{i\pi^2t} - e^{-i\pi^2t}}{2i}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...