Saturday, 28 November 2015

calculus - Query regarding other seemingly indeterminate forms

I know there are 7 indeterminate forms as follows-
$$0^0$$
$$1^{\infty}$$
$${\infty}^0$$
$$\frac{0}{0}$$
$$\frac{\infty}{\infty}$$

$$0\cdot\infty$$
$${\infty}-{\infty}$$



I cant help but wonder if these are also indeterminate-
$$(-1)^{\infty}$$
$$1^{-\infty}$$
$$({-\infty})^0$$



If these are not indeterminate forms can someone give an explanation regarding this dilemma ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...