Monday, 16 November 2015

real analysis - Is the zero set of a function open if the function is continuous on $mathbb R$?

f: $\mathbb R \to \mathbb R$ is continuous on $\mathbb R$. S:={x $\in\mathbb R$, f(x) = 0}. Is S open if the function is continuous on $\mathbb R$?




I tried to pick up an arbitrary point $\alpha$ in S.
Since the function is continuous on $\mathbb R$.



I get $\forall \varepsilon >0, \exists \delta > 0$, such that | f (x) - f ($\alpha$) | < $\varepsilon$, $\forall x \in V \delta (\alpha)$.



Since f($\alpha$)=0, 0 $\le| f(x) |< \varepsilon$.
Then f(x) = 0, x $\in$ S, $\forall x \in V \delta (\alpha)$.



Thus $\exists \delta >0, V \delta (\alpha) \subseteq S , \forall \alpha \in S$, which means S is open.




Is this well-proved or is there anything wrong?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...