Thursday 26 November 2015

real analysis - Find all roots of the equation :$(1+frac{ix}n)^n = (1-frac{ix}n)^n$



This question is taken from book: Advanced Calculus: An Introduction to Classical Analysis, by Louis Brand. The book is concerned with introductory real analysis.



I request to help find the solution.





If $n$ is a positive integer, find all roots of the equation :
$$(1+\frac{ix}n)^n = (1-\frac{ix}n)^n$$




The binomial expansion on each side will lead to:



$$(n.1^n+C(n, 1).1^{n-1}.\frac{ix}n + C(n, 2).1^{n-2}.(\frac{ix}n)^2 + C(n, 3).1^{n-3}.(\frac{ix}n)^3+\cdots ) = (n.1^n+C(n, 1).1^{n-1}.\frac{-ix}n + C(n, 2).1^{n-2}.(\frac{-ix}n)^2 + C(n, 3).1^{n-3}.(\frac{-ix}n)^3+\cdots )$$



$n$ can be odd or even, but the terms on l.h.s. & r.h.s. cancel for even $n$ as power of $\frac{ix}n$. Anyway, the first terms cancel each other.




$$(C(n, 1).1^{n-1}.\frac{ix}n + C(n, 3).1^{n-3}.(\frac{ix}n)^3+\cdots ) = (C(n, 1).1^{n-1}.\frac{-ix}n + C(n, 3).1^{n-3}.(\frac{-ix}n)^3+\cdots )$$



As the term $(1)^{n-i}$ for $i \in \{1,2,\cdots\}$ don't matter in products terms, so ignore them:



$$(C(n, 1).\frac{ix}n + C(n, 3).(\frac{ix}n)^3+\cdots ) = (C(n, 1).\frac{-ix}n + C(n, 3).(\frac{-ix}n)^3+\cdots )$$



$$2(C(n, 1).\frac{ix}n + C(n, 3).(\frac{ix}n)^3+\cdots ) = 0$$



$$C(n, 1).\frac{ix}n + C(n, 3).(\frac{ix}n)^3+\cdots = 0$$




Unable to pursue further.


Answer



Hint:
Put $$z=\frac{1+i\frac{x}{n}}{1-i\frac{x}{n}}$$ then $z$ will be a $n$-root of unity and solve for $x:$ $$z= \frac{1+i\frac{x}{n}}{1-i\frac{x}{n}}=\exp{\left(i\frac{2k\pi}{n}\right)},\quad k\in\{0,1,...,n-1\}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...