Tuesday, 17 November 2015

Limit of sequence. with Factorial



Can't find the limit of this sequence :
$$\frac{3^n(2n)!}{n!(2n)^n}$$
tried to solve this using the ratio test buy failed...
need little help


Answer



What's the problem with the ratio test?:




$$\frac{a_{n+1}}{a_n}=\frac{(2n+2)!\color{red}{3^{n+1}}}{(n+1)!(\color{green}{2}(n+1))^{n+1}}\frac{n!(\color{green}{2}n)^n}{(2n)!\color{red}{3^n}}=\frac{(2n+1)\cdot3}{n+1}\left(\frac{n}{n+1}\right)^n\xrightarrow[n\to\infty]{}\frac6e>1$$



and thus...


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...