Thursday, 26 November 2015

integration - Closed form of $int_0^{+infty}frac{xpi}{xpi+2sinh(xpi)} , dx$

I have numerically computed the integral $\int\limits_0^{+\infty}\frac{x\pi}{x\pi+2\sinh(x\pi)} \, dx$ such that it's value is a rational number and it's equal $0.298549$. An inverse symbolic calculator doesn't give anything. I think that it may have a closed form since it's related to the exponential function. How can I evaluate that in a closed form?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...