Monday, 23 November 2015

calculus - Why is$ (1+frac{1}{n})^n=e$ when n goes to infinity?





Why is $\lim\limits_{n\to\infty}(1+\frac1n)^n=e$?



I think it involves $\sum\limits_{n=0}^\infty\frac1{k!}=e$ but not sure how to get from one to the other.


Answer



Have you tried expanding by the binomial theorem? ;-)
$$(1/n+1)^n=\sum_{k=0}^n\binom{n}k\frac1{n^k}=\sum_{k=0}^n\frac{n!}{k!(n-k)!}\frac1{n^k}$$then as $n\to\infty$ we find $n!/(n^k (n-k)!)\to1$ hence we have:$$\lim_{n\to\infty}\sum_{k=0}^n\frac{n!}{k!(n-k)!\cdot n^k}=\sum_{k=0}^\infty\frac1{k!}\equiv e$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...