Thursday, 12 May 2016

geometry - Given the lenght of the hypotenus and the sum of the legs find the area of right triangle




Given: right-angled $\triangle ABC$, the length of the hypotenuse $c = 5$ and the sum of the legs $a+b = 6$. Find the area of the triangle.
I tried creating the following system $a+b = 6; a^2+b^2 =25$ however it got me nowhere, I get a really ugly quadratic equation .


Answer



We have
\begin{align*}
\text{Area }&=\frac12ab\sin \angle C\\[3pt]
&=\frac12ab\sin\frac{\pi}2\\[3pt]
&=\frac12ab\\[3pt]
&=\frac14\left[(a+b)^2-(a^2+b^2)\right]\\[3pt]
&=\frac14(36-25)\\[3pt]

&=\frac{11}4
\end{align*}


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...