Tuesday, 3 December 2019

calculus - Evaluating $ lim_{xto 0^+} (sin x)^x $

Evaluate the following limit.



$$ \lim_{x\to 0^+} (sin\ x)^x $$



What i have tried:



$$ ln\ [\lim_{x\to 0^+} (sin\ x)^x] $$




$$ \lim_{x\to 0^+} ln\ (sin\ x)^x $$



$$ \lim_{x\to 0^+} \frac{ln\ (sin\ x)}{\frac{1}{x}} $$



Applying l'hopital's rule.



$$ \lim_{x\to 0^+} \frac{cot\ x}{-x^{-2}} $$



If i keep applying l'hopital's rule, i get indeterminate form. Is what Iam doing right ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...