Tuesday 31 December 2019

real analysis - Epsilon-Delta Differentiability



Say we have the function $$f: \mathbb{R} \rightarrow \mathbb{R} ,\, with \, x \mapsto x^2$$



I understand how to prove f is differentiable using $$ f'(c) = \lim_{h \rightarrow 0} \tfrac{f(c+h) - f(c)}{h}$$
by substitution. But how would you prove differentiability using the epsilon-delta definition of limits:
$$\forall \epsilon>0 \,\, \exists \delta>0 \:s.t. |x-c|< \delta \implies |\tfrac{f(x) - f(c)}{x-c} - L | < \epsilon$$

Then $$f'(c) = L$$


Answer



Hint:
$$\left|\frac{f(x)-f(c)}{x-c}-2c\right|=\left|\frac{x^2-c^2}{x-c}-2c\right|=\left|\frac{(x+c)(x-c)}{x-c}-2c\right|=\left|x-c\right|$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...