Say we have the function f:R→R,withx↦x2
I understand how to prove f is differentiable using f′(c)=lim
by substitution. But how would you prove differentiability using the epsilon-delta definition of limits:
\forall \epsilon>0 \,\, \exists \delta>0 \:s.t. |x-c|< \delta \implies |\tfrac{f(x) - f(c)}{x-c} - L | < \epsilon
Then f'(c) = L
Answer
Hint:
\left|\frac{f(x)-f(c)}{x-c}-2c\right|=\left|\frac{x^2-c^2}{x-c}-2c\right|=\left|\frac{(x+c)(x-c)}{x-c}-2c\right|=\left|x-c\right|
No comments:
Post a Comment