Friday, 20 December 2019

number theory - Prime factor of $A=14^7+14^2+1$




Find a prime factor of $A=14^7+14^2+1$. Obviously without just computing it.


Answer



Hint: I've seen the 3rd cyclotomic polynomial too many times.




$$
\begin{aligned}
x^7+x^2+1&=(x^7-x^4)+(x^4+x^2+1)\\
&=x^4(x^3-1)+\frac{x^6-1}{x^2-1}\\
&=x^4(x+1)(x^2+x+1)+\frac{(x^3-1)(x^3+1)}{(x-1)(x+1)}\\
&=x^4(x+1)(x^2+x+1)+(x^2+x+1)(x^2-x+1)
\end{aligned}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...