Monday, 9 December 2019

limits - Discuss the differentiability of $e^{-|x|}$?

Discuss the differentiability of $e^{-|x|}$ ?






I tried something like making $2$ domains, $x\ge 0$ and $x<0$




$e^{-|x|} = e^{-x} | x\ge 0 $



and



$e^{-|x|} = e^{x} | x<0 $



By using definition of differentiability,



$$\lim_{x \to 0^+}\frac{f(x)-f(0)}{x-0} = \lim_{x \to 0^+}\frac{e^{-x}-1}{x} = -1$$




and Similarly



$$\lim_{x \to 0^-}\frac{f(x)-f(0)}{x-0} = \lim_{x \to 0^-}\frac{e^{x}-1}{x} =+1$$



Hence, I can say that it is not differentiable at $x=0$.






Is my understanding right or Am I missing something ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...