Friday 20 December 2019

definite integrals - Real-Analysis Methods to Evaluate $int_0^infty frac{x^a}{1+x^2},dx$, $|a|





In THIS ANSWER, I used straightforward contour integration to evaluate the integral $$\bbox[5px,border:2px solid #C0A000]{\int_0^\infty \frac{x^a}{1+x^2}\,dx=\frac{\pi}{2}\sec\left(\frac{\pi a}{2}\right)}$$for $|a|<1$.




An alternative approach is to enforce the substitution $x\to e^x$ to obtain



$$\begin{align}
\int_0^\infty \frac{x^a}{1+x^2}\,dx&=\int_{-\infty}^\infty \frac{e^{(a+1)x}}{1+e^{2x}}\,dx\\\\
&=\int_{-\infty}^0\frac{e^{(a+1)x}}{1+e^{2x}}\,dx+\int_{0}^\infty\frac{e^{(a-1)x}}{1+e^{-2x}}\,dx\\\\
&=\sum_{n=0}^\infty (-1)^n\left(\int_{-\infty}^0 e^{(2n+1+a)x}\,dx+\int_{0}^\infty e^{-(2n+1-a)x}\,dx\right)\\\\
&=\sum_{n=0}^\infty (-1)^n \left(\frac{1}{2n+1+a}+\frac{1}{2n+1-a}\right)\\\\

&=2\sum_{n=0}^\infty (-1)^n\left(\frac{2n+1}{(2n+1)^2-a^2}\right) \tag 1\\\\
&=\frac{\pi}{2}\sec\left(\frac{\pi a}{2}\right)\tag 2
\end{align}$$



Other possible ways forward include writing the integral of interest as



$$\begin{align}
\int_0^\infty \frac{x^a}{1+x^2}\,dx&=\int_{0}^1 \frac{x^{a}+x^{-a}}{1+x^2}\,dx
\end{align}$$




and proceeding similarly, using $\frac{1}{1+x^2}=\sum_{n=0}^\infty (-1)^nx^{2n}$.




Without appealing to complex analysis, what are other approaches one can use to evaluate this very standard integral?




EDIT:




Note that we can show that $(1)$ is the partial fraction representation of $(2)$ using Fourier series analysis. I've included this development for completeness in the appendix of the solution I posted on THIS PAGE.




Answer



I'll assume $\lvert a\rvert < 1$. Letting $x = \tan \theta$, we have



$$\int_0^\infty \frac{x^a}{1 + x^2}\, dx = \int_0^{\pi/2}\tan^a\theta\, d\theta = \int_0^{\pi/2} \sin^a\theta \cos^{-a}\theta\, d\theta$$



The last integral is half the beta integral $B((a + 1)/2, (1 - a)/2)$, Thus



$$\int_0^{\pi/2}\sin^a\theta\, \cos^{-a}\theta\, d\theta = \frac{1}{2}\frac{\Gamma\left(\frac{a+1}{2}\right)\Gamma\left(\frac{1-a}{2}\right)}{\Gamma\left(\frac{a+1}{2} + \frac{1-a}{2}\right)} = \frac{1}{2}\Gamma\left(\frac{a+1}{2}\right)\Gamma\left(\frac{1-a}{2}\right)$$




By Euler reflection,



$$\Gamma\left(\frac{a+1}{2}\right)\Gamma\left(\frac{1-a}{2}\right) = \pi \csc\left[\pi\left(\frac{1+a}{2}\right)\right] = \pi \sec\left(\frac{\pi a}{2}\right)$$



and the result follows.



Edit: For a proof of Euler reflection without contour integration, start with the integral function $f(x) = \int_0^\infty u^{x-1}(1 + u)^{-1}\, du$, and show that $f$ solves the differential equation $y''y - (y')^2 = y^4$, $y(1/2) = \pi$, $y'(1/2) = 0$. The solution is $\pi \csc \pi x$. On the other hand, $f(x)$ is the beta integral $B(1+x,1-x)$, which is equal to $\Gamma(x)\Gamma(1-x)$. I believe this method is due to Dedekind.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...