I attempted to start with the $L_p$ norm and raise it to the power of $p$ but got stuck because I realized that I have no idea how to eliminate the integrand.
$L_p$ norm:
$||f||_p = ||f||_{L_p[a,b]} = (\int_{a}^{b}~|f(x)|^p~~dx)^{\frac{1}{p}}$
$\\$
Answer
We have $|f_n(t)-f(t)| \le ||f_n-f||$ for all $f,f_n \in C$ , all $n \in \mathbb N$ and all $t \in [a,b]$. Hence
$|f_n(t)-f(t)|^p \le ||f_n-f||^p$ for all $f,f_n \in C$ , all $n \in \mathbb N$ and all $t \in [a,b]$.
This gives
$ \int_a^b|f_n(t)-f(t)|^p dt \le \int_a^b ||f_n-f||^p dt =(b-a)||f_n-f||^p$.
Therefore
$||f_n-f||_p \le (b-a)^{1/p}||f_n-f||$.
Conclusion: $||f_n-f|| \to 0$ implies $||f_n-f||_p \to 0$ .
No comments:
Post a Comment