Thursday 26 December 2019

Show convergence in C-norm implies convergence in $L_p$-norm



I attempted to start with the $L_p$ norm and raise it to the power of $p$ but got stuck because I realized that I have no idea how to eliminate the integrand.






$L_p$ norm:
$||f||_p = ||f||_{L_p[a,b]} = (\int_{a}^{b}~|f(x)|^p~~dx)^{\frac{1}{p}}$




$\\$






C-norm:
enter image description here


Answer



We have $|f_n(t)-f(t)| \le ||f_n-f||$ for all $f,f_n \in C$ , all $n \in \mathbb N$ and all $t \in [a,b]$. Hence




$|f_n(t)-f(t)|^p \le ||f_n-f||^p$ for all $f,f_n \in C$ , all $n \in \mathbb N$ and all $t \in [a,b]$.



This gives



$ \int_a^b|f_n(t)-f(t)|^p dt \le \int_a^b ||f_n-f||^p dt =(b-a)||f_n-f||^p$.



Therefore



$||f_n-f||_p \le (b-a)^{1/p}||f_n-f||$.




Conclusion: $||f_n-f|| \to 0$ implies $||f_n-f||_p \to 0$ .


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...