Tuesday, 31 December 2019

Slightly equal functions

Can there exist two elementary functions f(x) and g(x) defined everywhere on the real axis such that,
\begin{align} f(x)&=g(x)\qquad \text{if} \quad a\le x\le b\\
f(x)&\neq g(x)\qquad \text{if} \quad xb\end{align}
where f(x) and g(x) are not piecewise defined functions. And ab.



If yes, give example. If no, give proof.



Also, would it make any difference if the functions need not be elementary?



Edit : It seems there is a lot of confusion due to my inability of putting the question precisely. Please refer to the links.
Elementary functions http://en.wikipedia.org/wiki/Elementary_function
Piecewise defined function http://en.wikipedia.org/wiki/Piecewise




I have also added the 'defined everywhere' condition.

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...