I have the following n×n matrix:
A=[ab…bba…b⋮⋮⋱⋮bb…a]
where 0<b<a.
I am interested in the expression for the determinant det in terms of a, b and n. This seems like a trivial problem, as the matrix A has such a nice structure, but my linear algebra skills are pretty rusty and I can't figure it out. Any help would be appreciated.
Answer
Add row 2 to row 1, add row 3 to row 1,..., add row n to row 1, we get
\det(A)=\begin{vmatrix} a+(n-1)b & a+(n-1)b & a+(n-1)b & \cdots & a+(n-1)b \\ b & a & b &\cdots & b \\ b & b & a &\cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \ldots & a \\ \end{vmatrix}
=(a+(n-1)b)\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ b & a & b &\cdots & b \\ b & b & a &\cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & b & b & \ldots & a \\ \end{vmatrix}.
Now add (-b) of row 1 to row 2, add (-b) of row 1 to row 3,..., add (-b) of row 1 to row n, we get
\det(A)=(a+(n-1)b)\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & a-b & 0 &\cdots & 0 \\ 0 & 0 & a-b &\cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & a-b \\ \end{vmatrix}=(a+(n-1)b)(a-b)^{n-1}.
No comments:
Post a Comment