I try to prove the Exponential series :
exp(x)=∞∑k=0xkk!
From the definition of the exponential function exp(x)def=lim
I've tried a Binomial expansion of \exp(x) like :
\begin{split} \exp(x) &= \lim_{n\to\infty} \sum_{k=0}^{n} \binom{n}{k}\dfrac{x^k}{n^k}\\ &= 1 + \lim_{n\to\infty} \sum_{k=1}^{n}\left(\dfrac{x^k}{k!}\times \dfrac{n!}{(n-k)!\times n^k}\right)\\ &= 1 + \lim_{n\to\infty} \sum_{k=1}^{n}\dfrac{x^k}{k!}\prod_{j=1}^{k}\left(\dfrac{n-(j-1)}{n}\right)\\ &= 1 + \lim_{n\to\infty} \sum_{k=1}^{n}\dfrac{x^k}{k!}\prod_{j=1}^{k}\left(1-\dfrac{j-1}{n}\right)\\ \end{split}
Here is my problem. If I apply the limit, obtain :
\lim_{n\to\infty} \dfrac{j-1}{n} = (j-1) \times \lim_{n\to\infty}\dfrac{1}{n} = 0
But j approaches k which approaches n, so j approaches the infinity... and the limit is indeterminate : \infty \times 0 = \,?
How to evaluate this indeterminate form?
Thanks in advance.
No comments:
Post a Comment