Thursday, 26 December 2019

integration - Closed form for $ int_0^infty {frac{{{x^n}}}{{1 + {x^m}}}dx }$



I've been looking at




$$\int\limits_0^\infty {\frac{{{x^n}}}{{1 + {x^m}}}dx }$$



It seems that it always evaluates in terms of $\sin X$ and $\pi$, where $X$ is to be determined. For example:



$$\displaystyle \int\limits_0^\infty {\frac{{{x^1}}}{{1 + {x^3}}}dx = } \frac{\pi }{3}\frac{1}{{\sin \frac{\pi }{3}}} = \frac{{2\pi }}{{3\sqrt 3 }}$$



$$\int\limits_0^\infty {\frac{{{x^1}}}{{1 + {x^4}}}dx = } \frac{\pi }{4}$$



$$\int\limits_0^\infty {\frac{{{x^2}}}{{1 + {x^5}}}dx = } \frac{\pi }{5}\frac{1}{{\sin \frac{{2\pi }}{5}}}$$




So I guess there must be a closed form - the use of $\Gamma(x)\Gamma(1-x)$ first comess to my mind because of the $\dfrac{{\pi x}}{{\sin \pi x}}$ appearing. Note that the arguments are always the ratio of the exponents, like $\dfrac{1}{4}$, $\dfrac{1}{3}$ and $\dfrac{2}{5}$. Is there any way of finding it? I'll work on it and update with any ideas.






UPDATE:



The integral reduces to finding



$$\int\limits_{ - \infty }^\infty {\frac{{{e^{a t}}}}{{{e^t} + 1}}dt} $$




With $a =\dfrac{n+1}{m}$ which converges only if



$$0 < a < 1$$



Using series I find the solution is




$$\sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} $$





Can this be put it terms of the Digamma Function or something of the sort?


Answer



I would like to make a supplementary calculation on BR's answer.



Let us first assume that $0 < \mu < \nu$ so that the integral
$$ \int_{0}^{\infty} \frac{x^{\mu-1}}{1+x^{\nu}} \; dx $$
converges absolutely. By the substitution $x = \tan^{2/\nu} \theta$, we have
$$ \frac{dx}{1+x^{\nu}} = \frac{2}{\nu} \tan^{(2/\nu)-1} \theta \; d\theta. $$
Thus
$$ \begin{align*}

\int_{0}^{\infty} \frac{x^{\mu-1}}{1+x^{\nu}} \; dx
& = \int_{0}^{\frac{\pi}{2}} \frac{2}{\nu} \tan^{\frac{2\mu}{\nu}-1} \theta \; d\theta \\
& = \frac{1}{\nu} \beta \left( \frac{\mu}{\nu}, 1 - \frac{\mu}{\nu} \right) \\
& = \frac{1}{\nu} \Gamma \left( \frac{\mu}{\nu} \right) \Gamma \left( 1 - \frac{\mu}{\nu} \right) \\
& = \frac{\pi}{\nu} \csc \left( \frac{\pi \mu}{\nu} \right),
\end{align*} $$
where the last equality follows from Euler reflexion formula.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...