Sunday, 7 April 2013

elementary number theory - Given a sequence $a_1,a_2,ldots ,a_n$, if $gcd(a_1,a_2,ldots ,a_n) = 1$, then there exists one pair $a_i,a_j$ st. $gcd(a_i,a_j)=1$.



Anyone can help prove the following claim using elementary proof (no advanced number theory stuff)?





Given a sequence $a_1,a_2,\ldots,a_n$, if $\gcd(a_1,a_2,\ldots,a_n) = 1$, then there exists at least one pair $a_i,a_j$ for some $i,j\in\{1,2,\ldots,n\}$ with $i\neq j$ such that $\gcd(a_i,a_j)=1$.




Thank you!


Answer



$(6,10,15){}{}{}{}{}{}{}{}{}{}{}$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...