Wednesday, 3 April 2013

probability - Expected value of applying the sigmoid function to a normal distribution



Short version:




I would like to calculate the expected value if you apply the sigmoid function $\frac{1}{1+e^{-x}}$ to a normal distribution with expected value $\mu$ and standard deviation $\sigma$.



If I'm correct this corresponds to the following integral:



$$\int_{-\infty}^\infty \frac{1}{1+e^{-x}} \frac{1}{\sigma\sqrt{2\pi}}\ e^{ -\frac{(x-\mu)^2}{2\sigma^2} } dx$$



However, I can't solve this integral. I've tried manually, with Maple and with Wolfram|Alpha, but didn't get anywhere.



Some background info (why I want to do this):




Sigmoid functions are used in artificial neural networks as an activation function, mapping a value of $(-\infty,\infty)$ to $(0,1)$. Often this value is used directly in further calculations but sometimes (e.g. in RBM's) it's first stochastically rounded to a 0 or a 1, with the probabililty of a 1 being that value. The stochasticity helps the learning, but is sometimes not desired when you finally use the network. Just using the normal non-stochastic methods on a network that you trained stochastically doesn't work though. It changes the expected result, because (in short):



$$\operatorname{E}[S(X)] \neq S(\operatorname{E}[X])$$



for most X. However, if you approximate X as a normal distribution and could somehow calculate this expected value, you could eliminate most of the bias. That's what I'm trying to do.


Answer



I doubt that there's a closed-form solution. However, here's a series in powers of $\sigma$:



$$

\left( {{\rm e}^{-{\mu}}}+1 \right) ^{-1}+{\frac { \left( {
{\rm e}^{-{\mu}}}-1 \right) {{\rm e}^{-{\mu}}}}{2\, \left( {{\rm e}
^{-{\mu}}}+1 \right) ^{3}}}{{\sigma}}^{2}+{\frac { \left( {
{\rm e}^{-3\,{\mu}}}-11\,{{\rm e}^{-2\,{\mu}}}+11\,{{\rm e}^{-{
\mu}}}-1 \right) {{\rm e}^{-{\mu}}}}{8\, \left( {{\rm e}^{-{\mu}
}}+1 \right) ^{5}}}{{\sigma}}^{4}+{\frac {{{\rm e}^{-{\mu}
}} \left( {{\rm e}^{-5\,{\mu}}}-57\,{{\rm e}^{-4\,{\mu}}}+302\,{
{\rm e}^{-3\,{\mu}}}-302\,{{\rm e}^{-2\,{\mu}}}+57\,{{\rm e}^{-{
\mu}}}-1 \right) }{48\, \left( {{\rm e}^{-{\mu}}}+1 \right) ^{7}}}{{
\sigma}}^{6}+{\frac {{{\rm e}^{-{\mu}}}

\left( {{\rm e}^{-7\,{\mu}}}-247\,{{\rm e}^{-6\,{\mu}}}+4293\,{
{\rm e}^{-5\,{\mu}}}-15619\,{{\rm e}^{-4\,{\mu}}}+15619\,{
{\rm e}^{-3\,{\mu}}}-4293\,{{\rm e}^{-2\,{\mu}}}+247\,{{\rm e}^{
-{\mu}}}-1 \right) }{384\, \left( {{\rm e}^{-{\mu}}}+1 \right) ^{9}}}
{{\sigma}}^{8}+O \left( {{\sigma}}^{10} \right)
$$



EDIT: To obtain this, first do the change of variables $x = \mu + \sigma t$. The
integral becomes
$$ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty \dfrac{e^{-t^2/2}}{1 + e^{-\mu - \sigma t}}\ dt $$

Now take the Maclaurin series $$\frac{1}{1+e^{-\mu - \sigma t}} = \frac{1}{1+e^{-\mu}} + \frac{e^{-\mu} \sigma t}{(1+e^{-\mu})^2} + \frac{e^{-\mu} ( e^{-\mu} - 1) \sigma^2 t^2}{(1+e^{-\mu})^3} + \ldots$$
and integrate term by term.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...