Thursday, 11 April 2013

real analysis - Sum of infinite series $sum_{n=0}^{infty}(-1)^nfrac{n-1}{n!}t^n$



I have this problem, finding infinite sum of this series



$$\sum_{n=0}^{\infty}(-1)^n\frac{n-1}{n!}t^n$$




It should be done using derivatives and integrals, like for example:



$$\sum_{n=1}^{\infty}\frac{t^n}{n}=\sum_{n=0}^{\infty}\frac{t^{n+1}}{n+1}=\sum_{n=0}^{\infty}\int_{0}^{t}s^nds=\int_{0}^{t}\sum_{n=0}^{\infty}s^nds=\int_{0}^{t}\frac{1}{1-s}ds=-ln(1-t)$$



I have some ideas on how the solution should be found, but this $(-1)^n$ is keeping me confused, I don't know what should I do with it.



Any help would be very appreciated. Thanks!


Answer



$$\ldots =\sum_{n=0}^\infty \frac{n}{n!} (-t)^n - \sum_{n=0}^\infty \frac{1}{n!}(-t)^n=\sum_{n=1}^\infty \frac{1}{(n-1)!} (-t)^{n} -e^{-t}=(-t) e^{-t} - e^{-t}.$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...