Let's say there's a series of the form $$S=\frac{1}{10^2}+\frac{1\cdot3}{1\cdot2\cdot10^4}+\frac{1\cdot3\cdot5}{1\cdot2\cdot3\cdot10^6}+...$$
Now i had written the rth term as $$T_r=\frac{1\cdot3\cdot5....(2r-1)}{1\cdot2\cdot3.... r\cdot10^{2r}}=\frac{2r!}{r!\cdot r!\cdot2^r\cdot10^{2r}}$$
I came to the second equivalence by mutliplying and dividing the first expression with $2\cdot4\cdot6....2r\;$and then taking out a power of 2 from each of the even numbers multiplied in the denomininator.
From the looks of it, these expressions tend to give the idea of being solved using binomial most probably the expansion for negative indices but I don't understand how to get to the result from here
Friday, 5 April 2013
sequences and series - Tricky question on binomial
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment