Let
- $d\in\mathbb N$
- $\Omega\subseteq\mathbb R^d$ be non-empty and open
- $\phi:\Omega\to\mathbb R$ be continuous with compact support $\operatorname{supp}\phi$
Can we find a closed ball $K$ such that $K\subseteq\Omega$ and $K':=\operatorname{supp}\phi\subset K$?
No comments:
Post a Comment