Let
- d\in\mathbb N
- \Omega\subseteq\mathbb R^d be non-empty and open
- \phi:\Omega\to\mathbb R be continuous with compact support \operatorname{supp}\phi
Can we find a closed ball K such that K\subseteq\Omega and K':=\operatorname{supp}\phi\subset K?
Let
Can we find a closed ball K such that K\subseteq\Omega and K':=\operatorname{supp}\phi\subset K?
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment