Friday, 9 August 2013

calculus - How to compute the limit $lim_{x to infty}left[xleft(1+frac{1}{x}right)^x-exright]$?




How to compute the limit. My first instinct was to convert the expression in a fraction and use l'hopitals rule, but the didnt seem like it was going anywhere. Are there any better approaches to evaluating this limit?



$$\lim_{x \to \infty}\left[x\left(1+\frac{1}{x}\right)^x-ex\right]$$


Answer



$$\ln\left[\left(1+\frac1x\right)^x\right]
=x\ln\left(1+\frac1x\right)=1-\frac1{2x}+O(x^{-2})$$

so
$$\left(1+\frac1x\right)^x
=e\exp\left(-\frac1{2x}+O(x^{-2})\right)=e\left(1-\frac1{2x}+O(x^{-2})
\right)$$


and so
$$x\left(1+\frac1x\right)^x-ex\to-\frac e2$$
as $x\to\infty$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...