Saturday, 3 August 2013

integration - how can I evaluate this integral?

how to evaluate this integral:
$$l(y)=\int\limits_\beta^\infty \theta\exp(-y\theta)\alpha\exp(-\alpha\theta) \, d\theta$$
where $\alpha,\beta,\theta,y>0.$
Because I find it infinity!
Can anyone help me to evaluate this integral? Thank you.$$$$
I find this solution :$$\left(\left.\frac{-1}{(\alpha+y)^2}\exp(-(\alpha+y)\theta)\right)\right|_{\beta}^\infty-\left.\frac{\theta}{(\alpha+y)}\exp(-(\alpha+y)\theta)\right|_{\beta}^\infty.$$ $$$$
in which in the second term, I obtain infinity value!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...