Gradshteyn & Ryzhik, 7th ed., p. 570, formula 4.325(5) give the following definite integral:
∫10lnln(1x)1+x+x2dx=π√3ln3√2πΓ(23)Γ(13)=π√3(4ln2π3−ln32−2lnΓ(13))
This and other similar integrals are discussed in several papers:
- Vardi, Integrals, an introduction to analytic number theory. Am. Math. Mon. 95, 308–315 (1988)
- Adamchik, A class of logarithmic integrals. Proceedings ISSAC, 1–8, 1997
- Medina, Moll, A class of logarithmic integrals, Ramanujan J. 20 (2009), no. 1, 91–126
- Blagouchine, Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results, Ramanujan J. 2014; 35: 21
Is it possible to find a closed form for a similar integral having the square of the logarithm in the numerator?
∫10ln2ln(1x)1+x+x2dx
Answer
You may write
∫10ln2ln(1x)1+x+x2dx=∫∞0(1−e−t)ln2t1−e−3te−tdt=∞∑n=0∫∞0(e−t−e−2t)e−3ntln2tdt=∞∑n=0(∫∞0e−(3n+1)tln2tdt−∫∞0e−(3n+2)tln2tdt)=∞∑n=0∂2s(∫∞0tse−(3n+1)tdt−∫∞0tse−(3n+2)tdt)|s=0=∂2s(Γ(s+1)(∞∑n=01(3n+1)s+1−∞∑n=01(3n+2)s+1))|s=0=∂2s(Γ(s+1)3s+1(ζ(s+1,13)−ζ(s+1,23)))|s=0
π3√354+√3π9(γ+ln3)2+23(γ+ln3)(γ1(13)−γ1(23))+13(γ2(13)−γ2(23)).
Observe that, as pointed out by Vladimir Reshetnikov, you can make the following substitution
γ1(13)−γ1(23)=π√3(6lnΓ(13)−γ+ln32−4ln(2π)).
No comments:
Post a Comment