Saturday, 31 October 2015

integration - How can I evaluate $int_0^infty frac{sin x}{x} ,dx$? [may be duplicated]




How can I evaluate $\displaystyle\int_0^\infty \frac{\sin x}{x} \, dx$? (Let $\displaystyle \frac{\sin0}{0}=1$.)




I proved that this integral exists by Cauchy's sequence.



However I can't evaluate what is the exact value of this integral.


Answer



It's a famous Dirichlet integral.
http://en.wikipedia.org/wiki/Dirichlet_integral


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...