Wednesday, 28 October 2015

limits - Find $lim_{xto -infty} frac{(x-1)^2}{x+1}$




Find $\lim_{x\to -\infty} \frac{(x-1)^2}{x+1}$




If I divide whole expression by maximum power i.e. $x^2$ I get,$$\lim_{x\to -\infty} \frac{(1-\frac1x)^2}{\frac1x+\frac{1}{x^2}}$$

Numerator tends to $1$ ,Denominator tends to $0$



So I get the answer as $+\infty$



But when I plot the graph it tends to $-\infty$



What am I missing here? "Can someone give me the precise steps that I should write in such a case." Thank you very much!



NOTE: I cannot use L'hopital for finding this limit.


Answer




Hint: Write $$\frac{x^2\left(1-\frac{1}{x}\right)^2}{x\left(1+\frac{1}{x}\right)}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...