Tuesday, 20 October 2015

sequences and series - Prove limit of $sum_{n=1}^infty n/(2^n)$




How do you prove the following limit?



$$\lim_{n\to\infty}\left(\sum_{k=1}^n\frac{k}{2^k}\right)=2$$



Do you need any theorems to prove it?


Answer




We may start with the standard finite evaluation:
$$
1+x+x^2+...+x^n=\frac{1-x^{n+1}}{1-x}, \quad |x|<1. \tag1
$$ Then by differentiating $(1)$ we have
$$
1+2x+3x^2+...+nx^{n-1}=\frac{1-x^{n+1}}{(1-x)^2}+\frac{-(n+1)x^{n}}{1-x}, \quad |x|<1, \tag2
$$ by multiplying by $x$ and by making $n \to +\infty$ in $(2)$, using $|x|<1$, we get



$$
\sum_{n=0}^\infty n x^n=\frac{x}{(1-x)^2}. \tag3

$$ Then put $x:=\dfrac12$.



Edit. One may observe we have avoided differentiating an infinite sum.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...