Calculate : n−1∑k=1sin((2⌊√kn⌋+1)π2n).
Answer
Lemma Summation by Pasts (1)
b∑k=afkΔgk=fkgk|b+1k=a−b∑k=agk+1Δfk=fb+1gb+1−faga−b∑k=agk+1Δfk
with difference operator Δ:Δfk=fk+1−fk
My solution
$\text{Get }j=\left\lfloor \sqrt{kn}\right\rfloor\Rightarrow j\le \sqrt{kn}
Therefore if ⌊j2n⌋+1≤k≤⌊(j+1)2n⌋ then √kn=j
Note:
j=0⇒⌊j2n⌋+1=1
j=n−2⇒⌊(j+1)2n⌋=n−2
j=n−1⇒⌊(j+1)2n⌋=n>n−1
So that sum became
S=n−1∑k=1sin((2⌊√kn⌋+1)π2n)=sin((2⌊√(n−1)n⌋+1)π2n)+n−2∑k=1sin((2⌊√kn⌋+1)π2n)=sin((2n−1)π2n)+n−2∑j=0(⌊(j+1)2n⌋−⌊j2n⌋)sin((2j+1)π2n)=sin(π2n)+n−2∑j=0Δ(⌊j2n⌋)sin((2j+1)π2n)
Using the 1, we get
S=sin(π2n)+[sin((2j+1)π2n)⌊j2n⌋]n−1j=0−n−2∑j=0⌊(j+1)2n⌋(sin((2j+3)π2n)−sin((2j+1)π2n))=(n−1)sin(π2n)−2sin(π2n)n−2∑j=0⌊(j+1)2n⌋cos((j+1)πn)=(n−1)sin(π2n)−2sin(π2n)n−1∑j=1⌊j2n⌋cos(jπn)⏟=A
With sum A, using reverse summand property we get
A=n−1∑j=1⌊j2n⌋cos(jπn)=n−1∑j=1⌊(n−j)2n⌋cos((n−j)πn)=−n−1∑j=1⌊n−2j+j2n⌋cos(jπn)=−A+n−1∑j=1(2j−n)cos(jπn)⇒A=12n−1∑j=1(2j−n)cos(jπn)
We get
cos(jπn)=12sin(π2n)[sin((2j+1)π2n)−sin((2j−1)π2n)]=12sin(π2n)Δ[sin((2j−1)π2n)]
continue using 1 :)
A=(2j−n)4sin(π2n)sin((2j−1)π2n)|nj=1−14sin(π2n)n−1∑j=12sin((2j+1)π2n)
A=n−12+14sin2(π2n)n−1∑j=1Δ[cos(jπn)]=n−12+14sin2(π2n)⋅cos(jπn)|nj=1=n−12−1+cos(πn)4sin2(π2n)=n−12−2cos2(π2n)4sin2(π2n)
Therefore:
S=(n−1)sin(π2n)−2sin(π2n)A=(n−1)sin(π2n)−(n−1)sin(π2n)+cos2(π2n)sin(π2n)=cot(π2n)cos(π2n)
No comments:
Post a Comment