Thursday, 29 October 2015

calculus - Sum : sumsinleft(frac(2lfloorsqrtknrfloor+1)pi2nright).



Calculate : n1k=1sin((2kn+1)π2n).


Answer



Lemma Summation by Pasts (1)
bk=afkΔgk=fkgk|b+1k=abk=agk+1Δfk=fb+1gb+1fagabk=agk+1Δfk
with difference operator Δ:Δfk=fk+1fk



My solution




$\text{Get }j=\left\lfloor \sqrt{kn}\right\rfloor\Rightarrow j\le \sqrt{kn}

Therefore if j2n+1k(j+1)2n then kn=j



Note:



j=0j2n+1=1



j=n2(j+1)2n=n2




j=n1(j+1)2n=n>n1



So that sum became



S=n1k=1sin((2kn+1)π2n)=sin((2(n1)n+1)π2n)+n2k=1sin((2kn+1)π2n)=sin((2n1)π2n)+n2j=0((j+1)2nj2n)sin((2j+1)π2n)=sin(π2n)+n2j=0Δ(j2n)sin((2j+1)π2n)
Using the 1, we get
S=sin(π2n)+[sin((2j+1)π2n)j2n]n1j=0n2j=0(j+1)2n(sin((2j+3)π2n)sin((2j+1)π2n))=(n1)sin(π2n)2sin(π2n)n2j=0(j+1)2ncos((j+1)πn)=(n1)sin(π2n)2sin(π2n)n1j=1j2ncos(jπn)=A



With sum A, using reverse summand property we get
A=n1j=1j2ncos(jπn)=n1j=1(nj)2ncos((nj)πn)=n1j=1n2j+j2ncos(jπn)=A+n1j=1(2jn)cos(jπn)A=12n1j=1(2jn)cos(jπn)




We get



cos(jπn)=12sin(π2n)[sin((2j+1)π2n)sin((2j1)π2n)]=12sin(π2n)Δ[sin((2j1)π2n)]



continue using 1 :)



A=(2jn)4sin(π2n)sin((2j1)π2n)|nj=114sin(π2n)n1j=12sin((2j+1)π2n)



A=n12+14sin2(π2n)n1j=1Δ[cos(jπn)]=n12+14sin2(π2n)cos(jπn)|nj=1=n121+cos(πn)4sin2(π2n)=n122cos2(π2n)4sin2(π2n)




Therefore:



S=(n1)sin(π2n)2sin(π2n)A=(n1)sin(π2n)(n1)sin(π2n)+cos2(π2n)sin(π2n)=cot(π2n)cos(π2n)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...