Saturday, 24 October 2015

How is $zeta(0)=-1/2$?







Fermat's Dream by Kato et al. gives the following:




  1. $\zeta(s)=\sum\limits_{n=1}^{\infty}\frac{1}{n^s}$ (the standard Zeta function) provided the sum converges.



  2. $\zeta(0)=-1/2$




Thus, $1+1+1+...=-1/2$ ? How can this possibly be true? I guess I'm under the impression that $\sum 1$ diverges.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...