Thursday, 22 October 2015

summation - Easy question regarding this proof




I do not understand a small step in a proof I'm reading at the moment. Why are the following things equal?



$$\sum_{k=1}^{n} \frac{1}{2k-1} - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$


Answer



Separating out the odd & the even terms in the denominator,
$$\sum_{k=1}^{2n}\frac1k=\sum_{k=1}^n\left(\frac1{2k-1}+\sum_{k=1}^n\frac1{2k}\right)$$



$$=\sum_{k=1}^n\frac1{2k-1}+\sum_{k=1}^n\frac1{2k}$$




$$=\sum_{k=1}^n\frac1{2k-1}+\frac12\sum_{k=1}^n\frac1k$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...