Wednesday, 21 October 2015

real analysis - $sumlimits_{n=1}^infty log(1+a_n)$ converges absolutely $iffsumlimits_{n=1}^infty a_n$ converges absolutely.




$$\sum\limits_{n=1}^\infty \log(1+a_n) \text{ converges absolutely}
\Leftrightarrow \sum_{n=1}^\infty a_n \text{ converges absolutely}.$$





How to prove this,



Suppose $$\sum_{n=1}^\infty a_n \text{ converges absolutely}.$$ Let $u_{n}=a_{n}$ and $v_{n}=\log(1+a_n)$, then $$\lim_{n\to\infty} \frac{u_{n}}{v_{n}}=1>0 \implies\sum_{n=1}^\infty \log(1+ a_n) \text{ converges absolutely}.$$ How to prove the converse part?


Answer



Hint: From the definition of $\ln'(1),$ we have



$$\lim_{u\to 0}\frac{\ln (1+u)}{u} = 1.$$



Thus there is $a>0$ such that




$$\frac{1}{2}\le \left|\frac{\ln (1+u)}{u}\right| \le \frac{3}{2}$$



for $u\in (-a,a),u\ne0.$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...