Given some alternating series, the first step is to check whether it's absolutely convergent. Say it's not. Then you use the alternating series test. That test tells you if the series is convergent, but not necessarily if it's divergent (I think). So if it doesn't meet the conditions for that, what is your recourse? How do you confirm whether the series is conditionally convergent or not? All of the other tests I know require all positive terms -- so I don't know any other test to use.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment