Help me please with this improper integral:
$ \int_{0}^{\infty } e^{-\sqrt{x}}\text dx$
Thanks.
I solved it partially, and stuck after integration by parts.
Answer
$$I= \displaystyle \lim_{a \to \infty} \int \limits_{0}^{a} e^{-\sqrt{x}}\, \text dx= \displaystyle \lim_{a \to \infty} \left(2-2 \cdot\frac{\sqrt{a}+1}{e^{\sqrt a}}\right)=2-2\cdot \displaystyle \lim_{a \to \infty} \frac{\sqrt{a}+1}{e^{\sqrt a}}=2$$
The last limit can be evaluated using substitution $t=\sqrt{a}~$ and L'Hopital rule .
No comments:
Post a Comment