Friday, 13 November 2015

calculus - Improper integral $ int_{0}^{infty } e^{-sqrt{x}}text dx$



Help me please with this improper integral:



$ \int_{0}^{\infty } e^{-\sqrt{x}}\text dx$




Thanks.



I solved it partially, and stuck after integration by parts.


Answer



$$I= \displaystyle \lim_{a \to \infty} \int \limits_{0}^{a} e^{-\sqrt{x}}\, \text dx= \displaystyle \lim_{a \to \infty} \left(2-2 \cdot\frac{\sqrt{a}+1}{e^{\sqrt a}}\right)=2-2\cdot \displaystyle \lim_{a \to \infty} \frac{\sqrt{a}+1}{e^{\sqrt a}}=2$$



The last limit can be evaluated using substitution $t=\sqrt{a}~$ and L'Hopital rule .


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...