Does L=∑∞i=21nlog(n) converge or diverge?
I established that:
L≤I=∫∞21nlog(n)=lim
and as \lim_{n \to \infty} \log(x) = \infty , then L diverges.
But I'm not sure:
- of the sense of the inequality,
- about the conclusion.
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment