Friday, 6 November 2015

calculus - Is the series $ L = sum_{i=2}^{infty } frac{1}{n log(n)} $ convergent or divergent?

Does $ L = \sum_{i=2}^{\infty } \frac{1}{n \log(n)} $ converge or diverge?



I established that:
$$
L \le I

= \int^{\infty}_{2} \frac{1}{n \log(n)}
= \lim_{n \to \infty} [ \ln(\log(n)) - \ln(\log(2)) ],
$$

and as $ \lim_{n \to \infty} \log(x) = \infty $, then $ L $ diverges.



But I'm not sure:




  1. of the sense of the inequality,

  2. about the conclusion.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...