Friday, 6 November 2015

complex analysis - Did I misunderstand it or my book is wrong?

From my book, Prove that if $z \in \mathbb C $ where $|z|\leq 1$ then $|Im(1+\bar z+z^2)|\lt 3$



but, I have $|Im(1+\bar z+z^2)|\leq 3$




From $|Im(1+\bar z+z^2)|$ , I have



$$|Im(1+\bar z+z^2)|\leq|1+\bar z+z^2|\leq|1|+|\bar z|+|z|^2\leq1+|1|+|1|=3$$



Please check my solution, Thank you.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...